• Program

    The Goldschmidt2020 program

  • Venue

    All about the venue and city

  • Registration

    Details of how to register to attend the conference and/or submit an abstract

  • Exhibition

    Information for and about exhibitors and sponsors

  • My Goldschmidt

    My program, purchases, connections, etc.




  • Sponsor Seminars

  • Training Events

    These are scheduled events to help delegates test out the tools and platform we will be using for the Q&A and other events at the conference.

  • Workshops

    Our workshop program provides training and teaching in topics across geochemistry and related fields. We are currently liaising with the workshop organisers to ascertain if any workshops can become virtual. Any updates will be added to this page.


  • Conference Locations

    Location of the convention center and social events

  • Hotels

    The hotels are no longer available to book at the special rates agreed by the conference. Should you wish to cancel or change your hotel reservation please see the details below.


Present your work




My Goldschmidt

Role functions

Abstract Details

(2020) Deciphering Nd and Sm Isotope Composition in Chondrites

Frossard P, Boyet M, Bouvier A, Bonnand P & Auclair D


The author has requested that this abstract is not discussed on social media.

Sorry, the PDF cannot be displayed on your browser.

Download abstract

The author has not provided any additional details.

01g: Room 1, View in program

Listed below are questions that have been submitted by the community that the author will try and cover in their presentation. To submit a question, ensure you are signed in to the website. Authors or session conveners approve questions before they are displayed here.

Submitted by Noriko Kita on
EC residues show large isotope anomaly, in contrast to OC. Is it related to acid soluble sulfide in EC that contain a significant amount of REE? How REE concentrations in leachates are compared between EC and OC?
The striking difference between the large anomalies in EC and small in OC can be explained by two processes. Either the carriers of the anomalies were destroyed during parent body processing or the carriers signatures are diluted the non-anomalous material. In EC, the first leachate corresponds to oldhamite, a CaS that is very easily leached as you mentioned and carries up to 80% of REE. Therefore, anomalous Nd carriers such as SiC are less diluted. OC are very different because REE are more evenly distributed, most leachates contain 100 to 300 ng of Nd, which will inevitably dilute the extreme signatures. However, leachates obtained by Qin et al. (GCA, 2011) on a ordinary chondrite show large anomalies so I would suggest that we observe a mix of these processes, namely a dilution of the anomalous signatures and that this OC (NWA 8007) experienced significant thermal processing on the parent body.

Submitted by Yankun Di on
When compared to bulk OC, EC, CC, in your page 2 and 3, the Earth has an endmember mu142Nd, seems higher than bulk chondrites. However on page 11 the composition of Earth seems lower than the chondrite s-process mixing line (lower u142Nd), from the intercept of the line. Can you comment on what might cause this?
The value of the intercept (µ145Nd-µ142Nd) is actually within error of the terrestrial standard (6±4) for µ142Nd. Bulk chondrites plot on this regression line in µ145Nd-µ142Nd space (not represented). This intercept means that Earth’s composition plots on the nucleosynthetic processes mixing line as sampled in chondrites leachates and Earth's µ142Nd is nucleosynthetic in origin. This confirms the studies of Bouvier and Boyet (Nature, 2016) and Burkhardt et al. (Nature, 2016), with more reliable nucleosynthetic processes mixing lines than astrophysical calculations and the very few data on presolar SiC.

Submitted by Tetsuya Yokoyama on
If EL3 is the main contributor to the Earth's building block, how does this affect the major element compositions of bulk Earth as well as those of the modern terrestrial mantle?
There are very little, if at all, whole-rock major element analysis on EL3 chondrites, but I would expect it to be similar to EH3 chondrites. Javoy et al. (EPSL, 2010) proposed that EH3 are the main building blocks for the Earth, therefore the difference with an EL3-Earth should be minor, and implications similar.

Sign in to ask a question.