Home

  • Program

    The Goldschmidt2020 program

  • Venue

    All about the venue and city

  • Registration

    Details of how to register to attend the conference and/or submit an abstract

  • Exhibition

    Information for and about exhibitors and sponsors

  • My Goldschmidt

    My program, purchases, connections, etc.

Home

Program

Events

  • Sponsor Seminars

  • Training Events

    These are scheduled events to help delegates test out the tools and platform we will be using for the Q&A and other events at the conference.

  • Workshops

    Our workshop program provides training and teaching in topics across geochemistry and related fields. We are currently liaising with the workshop organisers to ascertain if any workshops can become virtual. Any updates will be added to this page.

Locations

  • Conference Locations

    Location of the convention center and social events

  • Hotels

    The hotels are no longer available to book at the special rates agreed by the conference. Should you wish to cancel or change your hotel reservation please see the details below.

Information

Present your work

Attend

Exhibition

Sponsorships

My Goldschmidt

Role functions

Abstract Details

I-Xe Dating of Solar Noble Gas-Rich Meteorites

Arai K, Takenouchi A, Sumino H & Tachibana S

Arai K, Takenouchi A, Sumino H & Tachibana S (2020) Goldschmidt Abstracts, 2020 75

Sorry, the PDF cannot be displayed on your browser.

Download abstract

The author has not provided any additional details.

01g: Room 1, View in program

Koharu Arai
Atsushi Takenouchi
Hirochika Sumino View all 6 abstracts at Goldschmidt2020
Shogo Tachibana View all 3 abstracts at Goldschmidt2020

Listed below are questions that have been submitted by the community that the author will try and cover in their presentation. To submit a question, ensure you are signed in to the website. Authors or session conveners approve questions before they are displayed here.

Submitted by Mattias Ek on
Hi Koharu. What fraction of 127I did you convert to 128Xe for your experiments? You say that you can increase this fraction by increaing the neutron flux. In practical terms how would you achive that? There appears to be a bit of scatter in your data for example Figure 11a. Do you know what could be causing this scatter?
Thank you for your question. The conversion rate was 2.1x10-5. In this study samples were irradiated in the reactor for 3 days. We are planning to expand the irradiation duration from three days to three weeks for out next experiments. This scatter may be due to the low production of 128Xe.

Submitted by Alison Hunt on
Hi, 10 million years after CAI is later than many other estimates for gas dissipation. What are the implications for giant planet growth and migration if the gas survives this long?
Thank you for your question. Ten million years seems longer than the observational estimate of lifetime of other disks. But ten million years here is the time for complete gas dissipation, which cannot be determined by the observation. So the timing determined in this study is likely to be longer than the observational estimate. Although we need to take more data, the lifetime of the solar system protoplanetary disk could still be within the variation of disk lifetime. As for the planet migration, the type I migration occurs within less than 1 million years. Thus this type of migration may not have worked efficiently in the Solar System. The type II migration may have occurred within the disk lifetime and the degree of migration should depend on when the gas giant formation occurred. We hope the disk lifetime estimated from meteorites can put a constraint on the timing of gas giant formation.

Submitted by Noriko Kita on
Zag is H3-6, so that hour I-Xe data would have mixed information? How different types distribute between light and dark clasts? Why graph(c) data show better linearity than other samples?
Thank you for your question. Both dark and light portions of Zag contain different petrologic types. The I-Xe data should contain those from different petrologic types. The data used to obtain the isochron was only from high temperature fractions, and the effect of different degrees of thermal metamorphism would be minimal. It is currently not clear why the isochron (c) has the better linearity than the others.

Submitted by My Riebe on
How sure are you that the relationship between I-Xe ages and SW is related to gas dissipation? Is it possible that the dark lithology is dark because it had a different history than the light one? This history could have involved spending more time in the superficial regolith were SW was acquired. This would also be in agreement with the dark lithology having lower I-Xe ages as these might have been partially reset by regolith processing. If I'm not mistaken Rubin et al. (MAPS, 2002) interpreted the dark lithology as a shocked version of the light lithology.


Sign in to ask a question.