Emplacement of the Monchique alkaline massif (SW Portugal): microstructures and magnetic fabric constraints

H. SANT’OVAIA1, C.R. GOMES2, L.G. PEREIRA2

1GIMEF, Dep. de Geologia FCUP, Centro de Geologia Univ. Porto, Portugal (hsantov@fc.up.pt)
2CGUC, Dep. de Ciências da Terra, Univ. Coimbra, Portugal

The Monchique massif aged of Upper Cretaceous (40Ar/39Ar 72.7±2.7 Ma, Valadares et al., 2005) covers an area of 80 km² and has an east-west elongate shape. This massif is composed by two principal units: the central one corresponding to a coarse grained nepheline syenite and a marginal unit represented by a heterogeneous syenite. The central unit contains large crystals of alkali feldspars, nepheline (25% to 40%), pyroxene, biotite and sphene. The marginal unit has a variable granulometry and is poorer on nepheline (10 to 20%) (Gonzalez-Clavijo & Valadares 2003). Gomes & Pereira (2004) considered this massif as an intrusion in an antiform structure and controlled by a NE-SW shear zone.

All the thin sections display microstructures typical of magmatic or submagmatic state and no microstructures indicate of strain developed under near-solidus conditions were observed. Preliminary studies of Anisotropy of Magnetic Susceptibility (AMS) were carried out measuring 102 oriented core samples from 12 sites, using an Agico Kappabridge (KLY-4S), at the Geology Dep., Porto University. The high average bulk susceptibility (23.83E⁻³ SI) together with previous paleomagnetic works (Gomes & Pereira, 2004) indicates that magnetite controls the magnetic behaviour. Magnetic anisotropy magnitude (Kmax/Kmin) is quite low, 1.065 on average. AMS fabric patterns show subvertical magnetic foliations associated with subhorizontal magnetic lineations. They have both a tendency to display NE-SW trends on the east and west sectors of the massif, passing to an E-W trend on the centre of the massif, drawing a sigmoid shape. Considering the AMS fabric as magma flow indicators, we propose that Monchique massif is a subvertical intrusion and that the steeply dipping magnetic foliations related to gentle dipping lineations represent an E-W trending of the magmatic flux controlled by a NE-SW left strike slip fault.

References